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ABSTRACT 

The Monterey County Health Department (MCHD) in California uses the Early 

Aberration Reporting System (EARS) to monitor emergency room and clinic data for 

biosurveillance, particularly as an alert system for various types of disease outbreaks. The 

flexibility of the system has proven to be a very useful feature of EARS; however, little 

research has been conducted to assess its performance.  In this thesis, a quantitative 

analysis based on modifications to EARS’ internal logic and algorithms is assessed. 

 Logic is used as a counting tool for potential cases of outbreak, and the Early Event 

Detection (EED) algorithms are used to determine whether or not an outbreak is about to 

occur. The EED methods are compared by assessing their ability to detect the presence of 

a known H1N1 outbreak in Monterey County.  This research found the cumulative sum 

(CUSUM) detection method to be the most reliable in signaling the H1N1 outbreak, 

across all combinations of logic explored. 
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EXECUTIVE SUMMARY 

The Monterey County Health Department (MCHD) in California uses the Early 

Aberration Reporting System (EARS) to monitor emergency room and clinic data for 

biosurveillance, particularly as an alert system for various types of disease outbreaks, 

both natural and man-made (e.g., bio-terrorism).  The concept behind Early Event 

Detection (EED) is to quickly detect abnormalities from the normal trends so that public 

health authorities can take the appropriate action to deal with them.  In particular, the 

intention is to expedite the detection of disease outbreaks by using data based on pre-

diagnosis “syndromes with the hope that at least for some outbreaks there will be a 

sufficiently strong signal in the data that the outbreak can be detected using a statistical 

algorithm in advance of the first case diagnosis by a medical professional.   

Monterey County’s EARS system uses data from six public clinics and four 

hospitals located throughout the county.  The data received from MCHD include the date 

of patient visit, age, sex, and home ZIP code of the patient, chief complaint, and 

diagnosis code for the clinics only.  Daily counts for various syndromic categories are 

calculated based on the presence or absence of key words in the chief complaints.  For 

example, existence of either the word “flu” or the phrase “fever and cough” in an 

individual's chief complaint would result in that individual being included in the 

Influenza-Like Illness (ILI) syndrome count for that day.   

The flexibility of the system has proven to be a very useful feature of EARS; 

however, little research has been conducted to assess the performance of EARS.  

Specifically, are there any changes that can be made to EARS’ logic and/or settings that 

would maximize the system’s ability to detect disease outbreaks?  Also, how do these 

changes affect EARS’ ability to detect a particular, known outbreak, such as the novel 

2009 H1N1 virus?  

 

 



To answer these questions, a quantitative comparison was conducted by 

implementing modifications to EARS’ logic and assessing the affect on daily counts, 

which is one of the key measures used by EARS to monitor for outbreaks. Logic 

modifications were compared by evaluating counts of the ILI syndrome over a one year 

period.   

As shown in Figure 1, out of 153,696 total patient records from August 1, 2008 to 

July 31, 2009, the logic encoded in the unmodified EARS system (the “Base Case”) 

flagged 9,093 records for the ILI syndrome.   

 

 

Figure 1.   Results of changes to EARS logic, symptom aliases, and syndrome 
definitions, as applied to MCHD data from August 1, 2008–July 31, 2009 

The second tier in Figure 1 illustrates the number of ILI syndrome counts when 

EARS’ symptom aliases and syndrome definitions are modified.  Specifically, the 

“Variant 1a” box on the left is based on an expanded ILI syndrome definition as well as a 

more robust symptom alias list used by MCHD. Variant 1a modifications to the EARS 

logic resulted in a 53% increase in the number of records flagged for the ILI syndrome.  

 xvi



 xvii

In comparison, the box on the right labeled “Variant 2a” used a restrictive symptom alias 

list and restrictive syndrome definitions subsequently employed and resulted in a 

reduction of the number of records flagged for ILI by 92% of the original “Base Case.”  

This illustrates the dramatic impact that changes in EARS logic can have on the daily 

syndrome counts. 

The bottom tier of Figure 1 illustrates the effects of changing the text-matching 

logic, which resulted in similarly large swings in the number of coded ILI syndromes.  

For example, the only difference between “Variant 1a” and “Variant 1b” is the change in 

text matching logic, which results in a 62% decrease (13,956 down to 5,414) in the 

number of records flagged for ILI.   

Using the various ILI counts that result from the logic variants, EARS 

performance was assessed by determining the system’s ability to detect a known 

outbreak.  To evaluate this, the ILI counts produced by the Base Case, Variant 1a, and 

Variant 2a logic were then used as inputs into the EARS’ system. In addition to the 

modified logic, alternative EED methods based on the cumulative sum (CUSUM) were 

tested.  Lastly, all methods were compared by assessing their ability to detect the 

presence of a known H1N1 outbreak in Monterey County.   

The CUSUM EED method proved the most reliable at signaling alarms prior to 

and throughout the time when Monterey County was experiencing H1N1 cases.  

Currently, EARS does not utilize the CUSUM algorithms. When testing the current EED 

methods, Variant 2a logic was shown to have the best performance in terms of signals 

triggered prior to an outbreak. Surprisingly, under original and Variant 1a sets of logic, 

EARS methods were of little to no value in signaling an outbreak. 
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I. INTRODUCTION   

A. EARLY EVENT DETECTION (EED)  

Health emergencies can either be naturally occurring (e.g., influenza), accidental 

(e.g., fire-related illnesses), or intentional (e.g., bioterrorism).  Given the possible life-

threatening nature of these situations, decision makers require timely diagnosis and 

reporting to reduce the negative impact to public health.  The concept behind Early Event 

Detection (EED) is to quickly detect abnormalities from the normal trends so that public 

health authorities can take the appropriate action to deal with them.  More formally, the 

Centers for Disease Control and Prevention (CDC) defines EED as “supporting the early 

detection of health events including determining and monitoring the size, location and 

spread of health events, and providing situational awareness to assist in the investigation 

and management of health events” (CDC, 2006).  This research evaluates EED methods 

found within a specific biosurveillance system known as the Early Aberration Reporting 

System (EARS) on actual H1N1 flu data from Monterey County, California.    

B. BIOSURVEILLANCE  

Shmueli and Burkom (2010) define biosurveillance as “the practice of monitoring 

data to detect, investigate, and respond to disease out-breaks.” Homeland Security 

Presidential Directive 21 (HSPD-21, 2007) further defines biosurveillance as:  

…the process of active data-gathering with appropriate analysis and 
interpretation of biosphere data that might relate to disease activity and 
threats to human or animal health—whether infectious, toxic, metabolic, 
or otherwise and regardless of intentional or natural origin—in order to 
achieve early warning of health threats, early detection of health events, 
and overall situational awareness of disease activity.  

Before the late 1990s, traditional biosurveillance generally took a retrospective 

approach for determining the cause of disease outbreaks.  Such outbreaks were generally 

identified only after one or more patients had been diagnosed by a medical professional 

and then subsequently reported to the appropriate public health authorities.  After 

diagnostic medical and public health data had been collected and analyzed on a disease, 
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sometimes it would take weeks or months to report these findings.  The problem with 

such delayed reporting is that it is more difficult for medical and public health decision 

makers to take mitigating measures, such as establishing quarantines for infected 

individuals and/or regions.   

Modern biosurveillance systems are intended to drastically shorten the time it 

takes to analyze and report data of interest, with the goal of facilitating the proactive 

detection and management of outbreaks.  By using less specific, aggregated, syndromic 

data, modern biosurveillance systems can now search for earlier outbreak signals, often in 

advance of an actual case being diagnosed, which may lead to more successful public 

health interventions (Shmueli & Burkom, 2010).   

While biosurveillance systems are most often used to detect and monitor natural 

diseases, they can also be used to detect bioterrorism events.  Bioterrorism, as defined by 

Evans (2010), “refers to the intentional release of organisms that can cause sickness or 

death.”  Shmueli and Burkom (2010) caution that complications can arise from the 

intended dual use of biosurveillance systems for detecting natural outbreaks and 

bioterror-related illnesses.  Specifically, it is difficult to define “normal behavior,” from 

which to derive appropriate baseline information, for both purposes.  For example, if a 

bioterrorism pathogen such as tularemia were released during peak flu season, a dual-use 

biosurveillance system may not be able to detect the bioterrorism attack.  While the issue 

of dual-use biosurveillance systems is beyond the scope of this research, it is likely to 

play a continuing and significant role in the detection and monitoring of disease 

outbreaks (Fricker, Hegler & Dunfee, 2010).   

Figure 2 illustrates that since 2001, the U.S. government has spent substantial 

resources on preparing the nation against a bioterrorist attack, including a proposed 

increase in funding of $271.3 million in the President’s FY2011 budget (Franco, 2010).  

In 2004, President Bush’s Project BioShield sought to address the challenges of potential 

chemical, biological, radiological, and nuclear (CBRN) terrorism attacks.  To see more 

information on Project BioShield, refer to the Congressional Research Service Report for 

Congress (Gottron, 2009).   



 

Figure 2.   Civilian Funding of Biodefense by Fiscal Year, FY2001–FY2011 in $millions 
(From Franco & Sell, 2010) 

1. Syndromic Surveillance 

This research assesses the performance of three syndromic surveillance EED 

methods that are implemented by EARS.  Figure 3 illustrates how this type of 

surveillance fits into the broader category of biosurveillance.  To begin, epidemiologic 

surveillance addresses biosurveillance as it applies to human beings.  Even more 

specialized, syndromic surveillance is defined as the “the ongoing, systematic collection, 

analysis, interpretation, and application of real-time (or near-real-time) indicators of 

diseases and outbreaks that allow for their detection before public health authorities 

would otherwise note them” (Sosin, 2003).  Table 1 provides a more detailed comparison 

of the various types of data used in biosurveillance, epidemiologic surveillance, and 

syndromic surveillance.  Notice that syndromic surveillance uses the least medically 

specific data, which is often derived from people who explain their symptoms, otherwise 

known as chief complaints, to hospitals or clinics (Fricker et al., 2010). 
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Figure 3.   Illustration of the various subsets of biosurveillance, to include epidemiologic 
surveillance and syndromic surveillance.    

 

Table 1.   Comparison of the categories of data used in biosurveillance, epidemiologic 
surveillance, and syndromic surveillance (From Fricker, 2010) 

Figure 4 illustrates the EED improvements that medical and public health 

communities hope to achieve with a biosurveillance system.  In particular, the intention is 

to expedite the detection of disease outbreaks by using data based on pre-diagnosis 

“syndromes,” with the hope that at least for some outbreaks there will be a sufficiently 

strong signal in the data that the outbreak can be detected using a statistical algorithm in 

advance of the first case diagnosis by a medical professional.  As defined by the 

International Foundation for Functional Gastrointestinal Disorders (IIFGD), a syndrome 
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is “a set of symptoms or conditions that occur together and suggest the presence of a 

certain disease or an increased chance of developing the disease” (IFFGD, 2010). 

  

 

Figure 4.   Illustration of how biosurveillance is intended to improve Early Event 
Detection (EED) and Situational Awareness (SA) (From Fricker, 2010) 

Some examples of Monterey County syndromes are listed in Table 2, while Table 

3 offers examples of actual chief complaints taken from Monterey County clinic data.  As 

described in Fricker, et al. (2010): 

Syndromes are frequently derived from emergency room chief complaint 
data.  A chief complaint is a brief summary of the reason or reasons that 
an individual presents at a medical facility.  Written by medical personnel, 
chief complaints are couched in jargon, acronyms, and abbreviations for 
use by other medical professionals.  To distill the chief complaints down 
into syndrome indicators, the text is searched and parsed for key words, 
often of necessity including all the ways a particular key word can be 
misspelled, abridged, and otherwise abbreviated.  

 

 

  __________________________________________ 

  Fever        Gastrointestinal (GI) 

 5



 6

  Hemorrhagic   Upper-respiratory 
  Lesion    Lower-respiratory 
  Neurological   Influenza-like Illness (ILI) 
  __________________________________________ 

Table 2.   Typical syndromes used in syndromic surveillance systems. 

A biosurveillance system has four main components: data collection, data 

management, analysis, and reporting (Fricker et al., 2010).  Mandl, Overhage, Wagner, 

Lober, Sebastiani, Mostashari, and Pavlin (2004) provide the following discussion and 

guidance about how to implement these components: 

 Data Collection:  Electronically stored data sources are necessary because 

they allow for robust syndromic grouping and are typically readily available.  

It is usually the case that the data received has already been collected for other 

purposes.  Unfortunately, implementing a new process is deemed as cost 

prohibitive and administratively taxing.  The use of pre-existing database 

systems does have the benefit of ensuring the availability of baseline data, 

which is important for algorithm development.  Public health officials must 

then determine which disease and associated syndromes should be tracked.   

 Data Management:  The next step is to acquire and manipulate the data, 

which can either be done manually or automatically.  Manual acquisition may 

require personnel resources from various clinics, hospitals, etc to transfer data.   

 Analysis:  The next step is to logically group the data in some way that 

provides useful information.  Free-text chief complaints can be grouped into 

syndromes using statistical algorithms to analyze the data for possible 

outbreaks over space and time.  Rolka (2006) notes that analysis should be of 

“sufficient sensitivity to provide signals within an actionable time frame while 

simultaneously limiting false positive signals to a tolerable level.” 

 Reporting:  The final step in the biosurveillance process is to report the 

findings to appropriate medical and public health communities.  Having 

sufficient and timely information is essential for designated authorities to take 

necessary action, such as conducting a public health investigation.   
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FU ANEMIA chdp 
book per angie FEVER,PHLEGM 
fever x3 days cough 4WK FU OB 
FEVER,WHEEZING FEVER 
VOMITING,FEVER,POSS EAR INFECT PAP 
CHDP COUGH,DXd W/ ASTHMA 
WI C/O HA//MM CHDP 
PAP per Kennedy DEPO 
BOOK PER MD ROB 4WK FU OB ..OVBK 
COLD ABD PAIN CONJESTION 
WALK IN BURN TO R-HAND new born with mom 
FU RESULTS RASH 
FU OB FU WT CHECK 
SHLDR PAIN FOR 1 WK PAP 

WCC 2 MONTH..ok WCC 2 MONTHS 
4WK FU OB..OVBK VMX/IC 
mom and baby NP/MUDGE/JR 
POST PARTUM/BOOK  FU VST URGENT FEET SWOLLEN 
NP MED REFILLS PRE-OP VST 
VOMITING AND COUGH walk-in hospital fu 

F/U ASTHMA, FEVER AND COUGH APPT 830 OK PER DR WELL CHILD EXAM 

  
 

Table 3.   Examples of actual chief complaints taken from Monterey County’s clinic data. 
(From Hanni, 2009a) 

Figure 5 illustrates the four main biosurveillance system components described 

above.  First, raw health-related data is collected from various sources.  Next, the 

incoming data is processed into databases by data management experts and software.  

Statistical algorithms will then analyze the data for possible outbreaks over space and 

time.  Lastly, the information must be communicated to medical and public health 

communities in order to support EED and SA efforts.   



 

Figure 5.   Four main components of a biosurveillance system: data collection, data 
management, analysis, and reporting. (From Fricker & Hanni, 2010)   

2. Early Aberration Reporting System (EARS) Syndromic Surveillance 
System 

Although a number of syndromic surveillance systems are available, EARS uses 

aberration detection models to identify deviations in current data when compared with a 

moving baseline of recent data (Lawson & Kleinman, 2005).  EARS was originally 

developed by the CDC as a method for monitoring large-scale bioterrorism attacks in 

locations with little to no baseline data (e.g., less than 7 days) (CDC, 2010b).  For 

example, EARS was used for syndromic surveillance at the Democratic National 

Convention in 2000, the Super Bowl and World Series in 2001 (Hutwagner, 2003), and 

Hurricane Katrina in 2005 (Toprani, 2006).  Following the terrorist events of 11 

September 2001, EARS has also been used as a routine health surveillance system by 

various city, county, and state public health officials. 

 

EARS is primarily focused on providing public health care officials with a means 

for early event detection (EED).  It is important to remember that EED does not 
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necessarily mean that an outbreak is occurring.  Rather, EED provides a signal that an 

outbreak may be occurring and potential justification for expending resources to further 

investigate.  As a by-product of this investigative process, enhanced SA about the 

specified syndrome will more than likely be achieved.  It is important to note that 

biosurveillance systems are not the sole means of detecting an outbreak.  It may very well 

be the case that clinicians or sentinel physicians will be faster at detecting an outbreak 

than a biosurveillance system.  Essentially, detection depends on the specific 

circumstances and in some cases, luck (Fricker et al., 2010).  Sosin (2003) conveys the 

idea that biosurveillance systems can act as a safety net, should the traditional detection 

methods, such as clinical diagnosis, fail.   

3. EARS and Monterey County Biosurveillance 

In 2004, Monterey County staff received training in some of the available 

biosurveillance systems.  Ultimately, the county decided to use EARS because of the 

system’s flexibility and allowance to keep the data local.  In particular, Monterey County 

Health Department (MCHD) liked the fact that it could develop its own syndromes for 

unique, local circumstances such as agriculture pesticide spraying and fire-related illness 

tracking (Fricker & Hanni, 2010). 

Figure 6 (a tailored version of Figure 5) illustrates how MCHD implements the 

EARS biosurveillance system.  Notice that the final reporting step corresponds to the 

Daily Observational and Situational Evaluation (DOSE) report which is updated daily 

and posted on the Internet1.  Figure 7 is an example of what the Monterey County DOSE 

report looks like.  The varying levels of “alert” correspond to a color-scheme of green, 

yellow, orange, and red.  A green block indicates that there were no alert flags from the 

previous day (e.g., no health concerns) while a red block indicates multiple alert flags 

(e.g., highest level of concern).  Alert colors other than green (e.g., action items) are 

usually discussed at the beginning of the report.  While EARS is primarily responsible for 

 
1 The most current DOSE report can be found by visiting the MCHD Web site at: 

http://www.co.monterey.ca.us/health/healthalerts/pdf/MC_DOSE.pdf. 



analyzing the data collection from clinics, hospitals, and ambulance reports, the DOSE 

report also encompasses other data categories as specified in Figure 5.   

 

 

Figure 6.   MCHD implementation of the EARS biosurveillance system (After Fricker & 
Hanni, 2010) 

Prior to the 2009 H1N1 pandemic, MCHD had gained valuable experience in 

using syndromic surveillance to track Influenza-Like Illness (ILI) and to improve 

response plans.  Local hospitals and clinics also benefitted from having access to these 

daily reports, and thus their compliance with MCHD’s data requirements improved.  

Once the H1N1 virus began to affect the Monterey County population, these pre-

established relationships helped with mutual response needs, such as planning for and 

responding to personal protective equipment (PPE) requests (Fricker & Hanni, 2010). 
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Figure 7.   Illustration of the reporting component of a biosurveillance system, the 
Monterey County DOSE Report for Friday, May 28, 2010 (From MCHD, 2010b) 
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C. 2009 H1N1 “SWINE FLU” VIRUS 

Cases of swine flu had been reported in literature prior to 2009; however, two 

children in southern California in March of that year were the first U.S. introduction to 

the current pandemic.  Within a week of the CDC determining that the strains were 

genetically similar, there were reports of widespread severe flu activity in Mexico and 

even more cases in the United States and possibly Canada.  By the second week after 

local health departments were alerted, and widespread H1N1 activity was reported across 

North America and into Europe.  This pandemic spread considerably faster than 

expected, taking only six weeks to go from a local outbreak to a pandemic (personal 

communication with Hanni, 2009). 

When the novel H1N1 flu outbreak was first detected in mid-April 2009, the CDC 

began working with states to collect, compile, and analyze information.  From April 15 to 

July 24, 2009, states reported a total of 43,771 confirmed and probable cases of the H1N1 

infection. Of these cases reported, only 12 percent were either hospitalized or died (CDC, 

2010c).  Illustrated in Figure 8, the number of cases reported during this timeframe per 

100,000 people was highest among the 5 to 24 year age group (26.7 per 100,000) and 

lowest in people 65 years and older (1.3 per 100,000) (Hanni, 2009).     

 

 

Figure 8.   Confirmed and probable H1N1 case rate by age group from April 15–July 24, 
2009 (From Hanni, 2009) 
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Figure 9 illustrates the estimated pandemic H1N1 flu hospitalization rate in the 

United States by age group from April 15 to July 24, 2009.  These estimates are based on 

the 4,738 hospitalizations that were reported to the CDC during this time period.  The 

reported hospitalization rate per 100,000 people was highest among children 0 to 4 years 

of age (4.5 children per 100,000) and lowest among people in the 25 to 49 years of age 

group (1.1 per 100,000) (personal communication with Hanni, 2009). 

 

 

Figure 9.   Estimated pandemic H1N1 flu hospitalization rate in the United States by age 
group from April 15 to July 24, 2009 (From Hanni, 2009) 

On July 24, 2009, confirmed and probable case counts were discontinued after the 

CDC deemed the virus “widespread” across the United States (CDC, 2010c).  In order to 

approximate the number of novel H1N1 flu cases in the US, a CDC model was developed 

that took the number of cases reported by states and adjusted the figure to account for 

underestimation.  For instance, not all people with the virus sought medical care, and of 

those who did, some may not have been specifically tested for H1N1.  The CDC model 

estimated that more than one million people became ill with novel H1N1 flu between 

April and June 2009 in the United States (CDC, 2010c). 

Monterey County relates the symptoms of the pandemic H1N1 2009 influenza to 

symptoms of regular, seasonal flu. According to the MCHD website as of July 2010, 

people usually exhibit one or more of the following symptoms: 
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--Fever greater than 100° F  --Sore throat  

--Cough    --Headache  

--Body aches    --Fatigue and/or dizziness 

--Chills    --Vomiting and diarrhea 

Federal agencies working on pandemic influenza planning guidance understood 

the effects that H1N1 cases would have on the delivery of patient care. This 

understanding, however, had to be balanced with the availability of scarce resources 

(Hanfling & Hick, 2009).  Perhaps Dr. Hanni (2009) said it best: 

Our surveillance tools are many, but we also have potential for a strain on 
our resources, both staffing and supplies for the coming flu season 
statewide and locally.  We have identified new risk groups that will need 
to be monitored and it is apparent that we will be needing to monitor for 
several strains of influenza and other respiratory viruses, especially given 
the fact that our vaccine for H1N1 will be available later in the season.  To 
that end, there have been some changes in reporting requirements that 
have also resulted in some changes to what data we are collecting locally. 

Monterey County often reviewed the CDC’s guidance for determining if a patient 

should be tested for the H1N1 virus.  These guidelines, as outlined in Figure 11, were 

first developed by the CDC in mid-June 2009 and last updated in mid-September 2009.  

During this particular period of increased concern over H1N1, MCHD looked at each 

alarm and engaged in daily discussions with the Infection Control Practitioners at their 

four hospitals (personal communication with Hanni, 2010).  In other words, in order to 

achieve sensitivity for detecting H1N1 in Monterey County, MCHD was willing to 

tolerate a high false positive rate. 

As for diagnosis, the MCHD lab was able to process samples within a few days to 

a week which indicated whether a person had the generic Influenza A virus (i.e., not a 

known H1 or H3 virus).   If a person tested positive, that was good enough to proceed as 

if the case was positive for H1N1 while the sample was sent to the state lab, which meant 

physicians and their staffs would wear the appropriate PPE with that person in a room.  

Due to the large influx of samples, however, state lab testing was sometimes delayed by 

as much as several weeks (personal communication with Hanni, 2010).   



 

Figure 10.   CDC Testing Recommendations for Pandemic (H1N1) 2009 Influenza Virus, 
last updated September 08, 2009 (From MCHD, 2009)  

Figure 11 shows the cumulative total of confirmed H1N1 cases in Monterey 

County from May 10, 2009 to April 5, 2010.  With 47 cases, September 2009 saw the 

highest number of confirmed H1N1 counts.  August and October 2009 were the next 

highest months with counts in the mid-thirties. 
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Figure 11.   Number of confirmed H1N1 cases from May 2009 to April 2010 in Monterey 
County (From Hanni, 2010) 

D. ORGANIZATION OF THIS THESIS 

There are two main components of EARS that are evaluated in this research, the 

logic and the EED algorithms.  As employed before the first H1N1 outbreak, EARS was 

deficient in detecting signals in the data.  The following chapters are organized as 

follows.  Chapter II describes how modifications to EARS’ logic and/or settings can 

affect the system’s EED performance.  Chapter III describes the algorithms used to 

evaluate the relative performance of the various EED methods studied against confirmed 

cases of the H1N1 virus, as well as a description of how various input and threshold 

values were chosen.  Chapter IV summarizes the results of the evaluation and makes 

recommendations for future EED improvement. 
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II. SYNDROMES: DEFINING AND CALCULATING DAILY 
COUNTS 

A. BACKGROUND 

EARS was originally intended to serve as a drop-in surveillance system; however, 

it is increasingly being used as a routine health surveillance system by local public health 

departments.  Unfortunately, little research has been conducted to verify the EED 

performance of EARS; specifically, whether there are any changes that can be made to 

EARS’ logic and/or settings that would maximize the system’s EED performance.   To 

gain more insight, this chapter describes a quantitative comparison of how modifications 

to EARS’ logic would affect daily counts (e.g., as outlined in the DOSE report) of the ILI 

syndrome.  The following three areas of possible logic modifications were explored: 

syndrome definitions, symptom aliases, and text matching algorithms. 

B. CHIEF COMPLAINT DATA COLLECTION AND REPORTING 

Monterey County's EARS system uses data from six public clinics and four 

hospitals located throughout the county.  The data received from MCHD include the date 

of patient visit; age, sex, and home ZIP code of the patient; chief complaint and diagnosis 

code for the clinics only.  All clinic visits that occurred during the previous work day are 

electronically transmitted daily to MCHD.  When clinic offices are closed during the 

weekends and select holidays, data transmission does not occur.   

Daily counts for various syndromic categories are calculated based on the 

presence or absence of key words in the chief complaints.  For example, existence of 

either the word “flu” or the phrase “fever and cough” in an individual's chief complaint 

would result in that individual being included in the ILI syndrome count for that day.  

Refer back to Tables 2 and 3 for examples and follow-on discussion regarding syndromes 

and chief complaints.    

Dr. Hanni (2009) notes that MCHD tracks influenza in the population by using 

reports of ILI from providers and clinics, both locally, statewide, and nationally.  Here, it 

is important to identify several crucial dates and events from such reports.  As depicted in 



Figure 12, the y-axis shows the percentage of visits (by week) that are due to ILI, 

beginning in October 2008 and ending in October 2009.  The dashed horizontal line is the 

national baseline, above which classifies as an epidemic situation.2  Comparing 2009 

data (in red) to previous years, Monterey County experienced a relatively mild influenza 

season.  However, in late April and early May 2009, there was an unexpected increase in 

the percentage of outpatients that were being seen for ILI, which continued throughout 

the summer and again peaked in late October and early November 2009.  Also of note is 

that on April 17, 2009, the CDC determined that the current pandemic H1N1 flu virus 

was active in the United States (personal communication with Hanni, 2009).  On June 11, 

2009, the World Health Organization (WHO) declared that H1N1 was a global pandemic 

(WHO, 2010). 

 

 

Figure 12.   Percentage of visits for ILI reported by the U.S. Outpatient ILI Network, 
National Summary 2008–09 and previous two seasons (From CDC, 2009) 

                                                 
2 For a detailed discussion on the ILI national baseline, refer to 

http://scienceblogs.com/effectmeasure/2009/09/trying_to_make_sense_of_flu_se.php. 
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C. CHANGES IN LOGIC 

1. Symptom Aliases  

In order for EARS to produce meaningful results, raw data such as text-based 

chief complaints must be turned into numerically-coded variables, such as syndrome 

indicators or demographic variables.  As an example, the following pseudo-code creates 

an indicator variable “ili_ind” for the ILI syndrome by searching for keyword substrings 

within chief complaint text: 

 

loop from i = 1 to number of data records 

set ILI_ind(i) = 0 

loop from j=1 to number of ILI keywords  

 if ILI_keyword(j) is a substring in chief_complaint(i) 

  then ILI_ind(i) = 1  

 

The above example identifies whether a set of keywords or symptoms aliases is 

contained in a free-form text block.  If so, these symptoms will become matched with a 

particular syndrome, in this case ILI.  Computer logic requires a list of keywords to be 

searched for, including abbreviations, acronyms, and common misspellings; however, 

caution should be exercised when creating this list.  If an acronym is too generic, for 

example, specificity may be jeopardized.   

To illustrate, the original CDC definition for the ILI syndrome is defined by the 

following symptoms: “sore throat” or “cold” or “cough.”   Table 4 shows a subset of the 

actual EARS’ “symptoms_code” file, which maps keywords to their respective 

symptoms.  

 

Table 4.   Subset of the CDC “symptom_code” file, as used by EARS to map keywords to 
symptoms (e.g., sore throat, cold, cough)  
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With the EARS’ SAS code that MCHD is currently using, if a keyword (as found 

in the “symptoms_code” file) is found anywhere within the free-text chief complaint 

field, it will match to the respective syndrome.  This simplified matching logic can be 

problematic, as in the case where “ASTHMA” is mapped to the SORETHROAT 

symptom because of the keyword “ST.”  Other examples of inappropriate matching 

include:  

•            “URINARY INFECTION” mapping to COLD because of keyword “URI” 

• “COLPOSCOPY” mapping to COLD because of keyword “COL” 

• “MOM NEEDS FOLLOW-UP” mapping to COLD because of keyword “OM” 

 

The above examples demonstrate that without a more sophisticated text matching 

algorithm, the above pseudo code is subject to spurious false positives.  A better approach 

might involve setting ili_ind=1 when, for example, “ST” occurs as a separate word in the 

chief complaint text (as in “ST AND FEVER”) but not as part of a longer word (as in the 

“ASTHMA” example above).  The algorithm must also be flexible enough to map root 

words found within the text string (e.g., “COUGH” within the text “COUGHING”). 

In addition to concerns associated with the text coding algorithm, the “symptoms” 

file itself must be heavily scrutinized.  For example, the following inappropriate 

mappings were discovered when using the original CDC symptoms file:   

• “NOSE BLEEDS” maps to COLD because of keyword “NOSE” 

• “VAGINAL DISCHARGE” maps to COLD because of keyword “DISCH” 

• “4 YEAR OLD WCC” maps to COLD because of keyword “OLD” 

Thus, in an effort to improve the overall specificity of the EARS program, aliases 

“NOSE,” “DISCH,” and “OLD” were removed from the “symptoms” file.   

2. Syndrome Definitions 

Figure 13 illustrates three possible ILI syndrome definitions.  According to the 

original CDC EARS definition, a record is flagged for ILI when a patient complains of 

any one or more of the following symptoms:  “sore throat” or “cold” or “cough.”  As 



shown in Figure 13, MCHD created an expanded definition of the ILI syndrome by 

allowing for many more symptom possibilities.  In doing so, the goal was to increase the 

chances of correctly classifying someone with the flu, though this strategy comes at the 

cost of also increasing the number of false positives (i.e., counting those without the flu 

in the ILI syndrome).3   

 

 

Figure 13.   Three versions of the ILI syndrome definition: original EARS (CDC), 
expanded MCHD, and restricted MCHD 

Monterey County now currently uses a more restricted definition of the ILI 

syndrome which has substantially lowered the number of records flagged.4  Instead of 

simply using one symptom to flag ILI, they now require more “evidence,” in the sense 

that to flag for ILI someone has to have two or more symptoms, such fever and cough, 

for example.  By using the restricted definition, the current goal is to limit the chances of 

incorrectly counting an individual in the ILI syndrome who does not actually have the 

                                                 
3 Medical and public health professionals would say that the expanded definition is intended to 

increase sensitivity at the cost of decreasing specificity. 

4 “Not shot” under the Restricted (MCHD) ILI syndrome definition means that the word “shot” is not 
included in the chief complaint field.  This ensures that a chief complaint containing the text “flu shot” will 
not be included as an ILI syndrome indicator because of the existence of the word “flu” in the text.   
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flu, though this strategy comes at the cost of a greater chance of missing some true 

positives (i.e., failing to count those with the flu in the ILI syndrome).5   

To illustrate the implications of different syndrome definitions, Figure 14 shows 

the estimated aggregate ER ILI activity for Monterey County and California since fall 

2009.  The upper line is the result of using the expanded ILI syndrome definition as 

compared to the original CDC definition (sore throat, cold, or cough) used by California 

Sentinel Providers.  At a close look, the two plots seem to have similar trends and signals. 

 This correlation may imply that it doesn’t really matter which definition you use; 

however, it could be that the larger cycle in the upper line could mask a real signal.    

 

 

Figure 14.   Emergency Room Influenza-Like Illness Visits for Monterey County and 
California, 2008–2009 Season (From Hanni, 2009) 

3. Text Matching Algorithms 

Changes to the EARS’ text matching logic can also have a large and significant 

impact on the number of individuals coded with a given syndrome.  In the context of the 

ILI syndrome, the original EARS (CDC) text-matching logic basically says the 

following: if an ILI keyword is found anywhere within the chief complaint field (even in 

                                                 
5 For the restricted definitions, medical and public health professionals would say that it increases 

specificity at the cost of decreasing sensitivity. 

 22



 23

                                                

the middle of a word), then it will be flagged as an ILI indicator.  By using such simple 

logic, words like “COLPOSCOPY” will be coded as a “COLD” symptom because of the 

keyword “COL.”  In a similar example, if the letters “MI” map to the “CARDIAC” 

symptom, one would not want the word “VOMIT” to be associated with cardiac 

symptoms just because the letters “MI” were contained within that word.   

In an effort to mitigate inappropriate symptom coding, a more sophisticated 

approach would be to revise the text matching logic.  Under the proposal known as 

“enhanced NPS logic,” the text-matching algorithm only allows symptom matches if ILI 

keywords are at the beginning or end of a word (or matches the word exactly).  The idea 

is that for any keyword that is less than or equal to three letters long, there cannot be any 

letters before or after it.  Otherwise, it will not count as a symptom indicator.  For 

example, by using enhanced NPS logic, the keyword “ST” in chief complaint “TEST” 

would not be flagged as an ILI indicator, nor would the keyword “COL” in chief 

complaint “RE-COLPO” be flagged as an ILI indicator.  The reason in both cases is 

because there are letters on either side of the keyword.  See Figure 15 for a graphical 

depiction of the examples above.6   

 
6 “Red” or dark colored blocks indicate that text-matching logic will prevent keywords from mapping 

to symptoms if additional letters or symbols are present.  “Powder blue” or light colored blocks indicate 
that additional letters or symbols are allowed by text-matching logic in mapping keywords to symptoms.         



 

 

Figure 15.   Examples of how “Enhanced NPS Logic” works for text-matching keywords 
with symptoms 

For words greater than or equal to four characters using enhanced NPS logic, 

variations on the symptom keywords are allowed but only on one side of the word or the 

other.  For example, the word “COUGH” can have many variations, such as COUGHS, 

COUGHED, or COUGHING.  In which case, it is appropriate to flag such variations of 

the word “COUGH” as being an ILI indicator.  Unfortunately, using the enhanced logic 

alone does not necessarily guarantee that all inappropriate mappings will be eliminated.  

For example, keyword “OUGH” would allow the following chief complaint to be 

inappropriately flagged for ILI: “PREV APPT CALL NOT GOING THROUGH”.  This 

example also highlights the importance of carefully reviewing the “symptoms” file.  See 

Appendix A for the R code on implementing “enhanced NPS logic.” 

4. Summary of Changes in Logic   

After exploring the three areas of logic, Figure 16 illustrates the quantitative 

results of the analysis performed.  The top box in Figure 16 refers to the original CDC 

 

 

text matching logic, symptom aliases, and syndrome definitions as the “Base Case.”  
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When running these algorithms together, out of 153,696 total records, 9,093 records 

(almost 6%) were flagged as being ILI syndromes.  

 

 

Figure 16.   Qualitative results of changes to EARS logic, symptom aliases, and syndrome 
definitions, as applied to MCHD data from August 1, 2008–July 31, 2009 

In the second tier of Figure 16, the EARS text matching logic remained the same, 

while the symptom aliases and syndrome definitions were altered.  The box on the left 

indicated as “Variant 1a” used the expanded ILI syndrome definition (refer to Figure 13) 

as well as a more robust symptom alias list, which has been previously demonstrated to 

yield an increase in spurious matches.  The expanded aliases and syndrome definitions 

resulted in a 53% increase in the number of records flagged for the ILI syndrome.  In 

comparison, the box on the right labeled “Variant 2a” used the restrictive symptom alias 

list and restrictive syndrome definitions, which resulted in a reduction of the number of 

records flagged for ILI by nearly 92% of the original “Base Case.”   

The bottom tier of Figure 16 illustrates the significance of changes to the text-

matching logic, which results in similarly large swings in the number of coded ILI 
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syndromes.  For example, the only difference between “Variant 1a” and “Variant 1b” is 

the change in text matching logic, which results in a 62% decrease (13,956 down to 

5,414) in the number of records flagged for ILI. 

Figure 17 is a visual representation of smoothed ILI counts over time using the 

five sets of logic described above.  The Base Case (solid black line) and Variants 1a and 

1b (dashed lines directly above and below the solid line) basically look to be the same 

curve shifted up or down, which suggests those variants are simply adding in or 

subtracting out some sort of average level of noise.  On the other hand, there are some 

smaller differences (in terms of the “spikes”), which may turn out to be significant 

differences.  

Variants 2a and 2b (the two lowest curves), look different from the other three, 

not just because of the significantly lower average daily counts, but also because it looks 

like some of the trends differ.  For example, the time series from 1a, 1b, and the Base 

Case all show a clear spike between times 0–50, followed by another spike between times 

50–100.  In contrast, Variants 1b and 2b only seem to show a spike from times 50–100. 

 



 

Figure 17.   Smoothed ILI counts from MCHD during August 1, 2008–July 31, 2009 
(excluding weekends) using five different combinations of text matching logic, 

symptom aliases, and syndrome definitions.    

In Chapter III, the ILI counts produced by the Base Case, Variant 1a, and Variant 

2a logic will be used as input into EARS and other EED algorithms. Unfortunately, it was 

simply not possible to choose the best set of daily counts using a “gold standard.”7  In a 

study performed by Espino and Wagner (2010), the classification performance of 

International Classification of Diseases 9th Edition (ICD-9) based 8 detectors was 

measured against the human classification of cases and found that: 

                                                 
7 As defined by The Free Dictionary (http://www.thefreedictionary.com/gold+standard), gold 

standards are “the supreme example of something against which others are judged or measured.” 

8 As defined by The Free Dictionary (http://medical-dictionary.thefreedictionary.com/ICD-9-CM), 
ICD-9 codes are “A standardized classification of disease, injuries, and causes of death, by etiology and 
anatomic localization and codified into a 6-digit number, which allows clinicians, statisticians, politicians, 
health planners and others to speak a common language, both U.S. and internationally.” 
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ICD-9-coded diagnoses offer no advantages in positive predictive value 
and specificity.  However, because the diagnosis codes are significantly 
delayed (on average by 7.5 hours), it is clearly the case that detection 
systems should focus on the chief complaint data, when it is available. 

Since clinics adhere to ICD-9 codes for insurance billing purposes, it would be 

plausible to assume that these codes could be used as the “gold standard.”  Unfortunately, 

there were many obvious issues that made ICD-9 codes unsuitable for use.  Specifically, 

the code V20 appeared quite often as a catch-all for many seemingly unrelated illnesses 

(e.g., flu, women's wellness exams, HPV shots, etc).9  For these reasons and despite 

having ICD-9 codes in the MCHD dataset, it was determined not to use them as a “gold 

standard” and instead use documented H1N1 cases.  Finally, Chapter IV will compare the 

results of various algorithms to see if one or more can do better at detecting a known 

H1N1 outbreak in Monterey County. 

 
9 V codes are considered to be ‘Supplementary Classification of Factors Influencing Health Status and 

Contact With Health Services,’ where the V20 code is listed as ‘health supervision of infant or child’ under 
the subcategory of ‘Persons Encountering Health Services In Circumstances Related To Reproduction And 
Development.’ 



III. EARLY EVENT DETECTION METHODS 

This chapter describes the EED methods that are tested in conjunction with the 

various sets of logic presented in Chapter II.  These EED algorithms include the methods 

currently used in the EARS system as well as a CUSUM-based method first described 

and evaluated in Fricker et al. (2008).  The goal of these methods is to monitor the 

syndromic data as it comes into MCHD over time and signal when the data deviates 

significantly from trends in the recent past. 

A. EXISTING EED METHODS: EARS 

As described in Fricker et al. (2008), the current EARS’ detection methods are 

called “C1,” “C2,” and “C3.”  The C is likely an abbreviation for the cumulative sum 

(CUSUM) methodology from which the EARS documentation claims these methods 

were derived.  However, as Section B makes clear, this description is incorrect because 

none of these methods are actually based on or derived from the CUSUM.   

The C1 method calculates a standardized syndrome daily count for day t using the 

sample average and sample standard deviation estimated from the previous 7 days of 

daily counts,   
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As implemented in EARS, the C1 method signals an alarm at time t when the 

statistic exceeds a fixed threshold h, which occurs when the observed count exceeds 

three sample standard deviations from the sample mean: >3. 

1( )C t

1( )C t

The C2 method is very similar to C1 but differs in that it uses a 2-day lag before 

calculating a standardized value using the previous 7 days worth of data.  Specifically, 
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The C2 method also signals at time t when the statistic exceeds a fixed 

threshold h, which occurs when the observed count exceeds three sample standard 

deviations from the sample mean: >3. 

2 ( )C t

2 ( )C t

Lastly, the C3 method combines current and historical data from day t and the 

previous two days, and signals an alarm when C3(t)>2.  It calculates the statistic at time t 

as follows: 

                                              
2

3 2( ) max[0, ( ) 1]
t

j t

C t C j




    (3) 

Of particular note and concern, EARS’ C1, C2, and C3 algorithms factor in 

“zeros” for days when clinics are not open for business (e.g., weekends and holidays).  

Given that the sample mean and sample standard deviation are based on the previous 7-9 

days worth of data, exceeding the alarm thresholds will prove difficult, as shown in 

Chapter IV. 
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B. AN ALTERNATIVE EED METHOD BASED ON THE CUSUM  

1. Basic CUSUM 

The CUSUM is a statistical process control (SPC) methodology often used in 

managing the quality of manufactured items.  See Montgomery (2001) for an introduction 

and Hawkins and Olwell (1998) for a comprehensive treatment of the CUSUM.  The 

most commonly used CUSUM is of the form,  

 

 31

0 k 1 1max[0, ]t t tC C Y     ,   (4) 

where 1tX  is the count at time t+1, 2
1 0~ ( , )tX N    is the desired state of the process, 

and k is referred to as the “reference interval.”  For the CUSUM designed to detect the 

shift in the mean of a normal distribution from 0 to 1, the reference interval is defined 

as 

 1| |

2 2
ok

    
  ,  (5) 

where 1 is the mean shift that is desired to be detected quickly.  Note that this is a one-

sided CUSUM designed to detect increases in the mean.  In industrial quality control 

applications, two CUSUMs are often employed—one to look for increases in the mean 

and another to monitor for decreases.  In syndromic surveillance, however, only 

employing a single CUSUM (such as Equation 4) to look for increases is appropriate 

since detecting decreases in disease incidence is generally not of interest.   

2. CUSUM Applied to Biosurveillance Data  

In biosurveillance, the data is unlikely to be stationary since syndromic 

surveillance daily counts often have uncontrollable systematic effects and trends such as 

an annual influenza seasonal cycle and day-of the week effects.  Yet, the CUSUM of 

Equation 4 and its use in quality control is based on the assumption of stationary data.  It 

is therefore inappropriate to apply the CUSUM directly to biosurveillance data.   

 



Instead, per Montgomery (2001), an appropriate approach is to model the 

systematic trends of the data and then apply CUSUM to the prediction errors from the 

model.  Fricker et al. (2008) found the “adaptive regression with sliding baseline” of 

Burkom (2007) to be an effective modeling technique for removing systematic trends in 

syndromic surveillance data and this work will use the same approach. 

As described by Fricker et al. (2008), the basic idea behind adaptive regression is 

as follows.  Let Xt be the observation on day t, say the number individuals presenting at a 

clinic or emergency room with a particular syndrome.  For , where n (the “baseline 

period”) is some fixed number of time periods, model the most recent n daily syndrome 

counts, Xt, Xt-1, …, Xt-n+1, as a linear function of time relative to day t: 

t n

 

  0 1 2 Mon 3 Tues 4 Wed 5 ThursiY i t n I I I I                 (6) 

 

where, for i = t,…,t-n+1, β0 is the intercept term, β1 is the slope, the Is are indicator 

functions (I = 1 on the relevant day of the week and I = 0 otherwise) and ε is the error 

term to account for random variability.  Following the approach of Fricker et al. (2008) 

and in spite of the non-normal time series data, the model is fit using ordinary least 

squares regression and is re-fit each day by using the most recent n observations as the 

sliding baseline.   

Once fit, the model is used to estimate the predicted count for the current day 

(t+1), 

 , (7) 1 0 1
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where  and  are the estimated model coefficients from the regression fit 

at time t, and where  is the relevant estimated day-of-the-week coefficient.  Given 

the daily count at time t+1, Xt+1, the predicted count is then used to calculate the 

prediction error at time t+1, 

0 1
ˆ ˆ( ), ( )t  ˆ ( )j t

( )j t̂

 1 1
ˆ

t t tY Y     , (8) 
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which is then standardized using the estimated standard deviation of the prediction errors 

from the last m time periods, 1 1t t ˆ tZ
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For biosurveillance, the CUSUM of Equation 4 thus becomes 

1t ~ (0,1)

k

 

 1 1max[0, ]t t tC C Z   .    (9) 

3. Application of the CUSUM to MCHD Data 

Before applying Equation 9 directly to the MCHD dataset, the assumption of 

normality of the standardized residuals was assessed using a “historical” set of data.10  

Using this subset of data, a baseline period of n=35 days and an additional m=10 days, 

standardized residuals were calculated from an adaptive regression.  See Appendix B for 

the MATLAB code used to fit the adaptive regressions and calculate the standardized 

residuals.  Normal quantile-quantile (Q-Q) plots demonstrated that the standardized 

residuals were reasonably normally distributed.  See Appendix C for Q-Q plots and 

standardized residual plots of the histroical data set.   

Although Fricker et al. (2008) and Burkom (2007) used an 8-week sliding 

baseline (n=56 days, based on a 7-day week), preliminary research on the MCHD data 

found a 7-week sliding baseline (n=35 days, based on a 5-day week) to be preferred 

across all algorithm variants.  This preference stemmed from evaluations of the Q-Q plots 

of the residuals, where for smaller and larger n the residuals for some of the algorithm 

variants began to show departures from normality.  Fricker et al. (2008) cautions that 

depending on the particular outbreak of interest, there is a trade-off between the amount 

of historical data used and the predictive accuracy of the model.    

In circumstances where it is important to detect a mean increase quickly, such as 

when MCHD was on high alert for H1N1, one might reasonably want to detect a one 

standard deviation increase in the mean.  Given that , 0=0 and thus the 

reference interval from Equation 5 for the standardized residuals becomes 

1 ~ (0,1)tZ N 

                                                 
10 From August 8, 2008-January 12, 2009 equals approximately 1/3 of the entire MCDH data set (or 

119 days worth). 
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k


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For the purposes of this thesis, the k for detecting this magnitude of shift in the mean is 

called an “aggressive” reference interval where, for n = 35, k = 0.56.   

Besides choosing the reference interval, implementing the CUSUM also requires 

choosing a threshold h.  The choice of threshold is based on the Average Time to False 

Signal (ATFS) metric, where assuming the CUSUM is re-set after signals, the ATFS is 

the average time between false signals.11  Thus, the threshold is set to achieve the 

smallest AFTS that can be reasonably accommodated, given the finite resources available 

to further investigate the resulting rate of false positive signals.  In the case where MCHD 

was on high alert for H1N1 symptoms, perhaps an ATFS of once every few days would 

be acceptable.  Here, an “aggressive” ATFS was set to be 5 days.12   

In order to determine threshold h based on a known reference interval k and 

known ATFS, Hawkins and Olwell (1998) recommend using Siegmund’s approximation  
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         (11) 

This approximation is not accurate for small ATFS values and so the threshold 

was instead estimated via simulation.  Appendix D contains the R code for the 

simulation.  For a given k, one iteratively runs this simulation for various values of h 

starting with a small number of iterations, variable “x.”  As one gets closer to the desired 

ATFS with h, increase “x” until the standard error becomes small enough.  Under the 

“aggressive” CUSUM parameters for looking at H1N1 cases, using h = 0.296 with k = 

0.56 achieves an ATFS = 5 (s.e. = 0.0045).   

 

                                                 
11 In SPC terminology, the ATFS when the biosurveillance algorithm is reset is functionally 

equivalent to the Average Run Length (ARL).  

12 Five days is one full week (Monday-Friday) since clinics are not open during the weekends. 
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For comparison purposes, this thesis also looked at more “routine” parameters for 

monitoring the ILI syndrome with ATFS=20 and k = 1.06 (an approximate 2σ shift in the 

mean).  Using the simulation found in Appendix B and under these “routine” parameters, 

h = 0.62.  See Table 5 for a summary of the two CUSUM algorithm parameters, and note 

their labels: CUSUM 1 (aggressive) and CUSUM 2 (routine).   
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62

Type Label ATFS k h

"Aggressive" CUSUM 1 5 0.56 0.296

"Routine" CUSUM 2 20 1.06 0.

Parameters

 

Table 5.   CUSUM parameters used in Matlab code for monitoring the ILI syndrome 
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IV. RESULTS 

This chapter summarizes the detection performance of EARS (C1, C2, and C3) 

and CUSUM (aggressive and routine) algorithms against actual H1N1 cases observed in 

Monterey County from September 30, 2008 to October 29, 2009.  The subsections are 

organized by the ILI counts produced by the various sets of logic (e.g., Base Case, 

Variant 1a, and Variant 2a) as described in Chapter II.   

A. ILI COUNT COMPARISONS  

The time periods (e.g., seasonal flu, 1st H1N1 wave, 2nd HIN1 wave) labeled in 

Figure 18 refer to the national ILI outpatient trends in Figure 12 from September 30, 

2008 to October 29, 2009, with an overlay of the smoothed MCHD ILI count 

comparisons of the Base Case, Variant 1a, and Variant 2a logic.  Specifically, the 

national 2009 seasonal influenza outbreak began a steady upward trend beginning in late-

January 2009 and peaked in late-February into early-March 2009.  The vertical line above 

the date 3/2/09 in Figure 18 represents the end of the “historical” period,13 with the first 

possible EED signal occurring on March 2, 2009. 

 

 
13 September 30, 2008, to February 27, 2009. 



 

Figure 18.   Smoothed ILI count comparisons of Base Case, Variant 1A, and Variant 2A 
logic from September 30, 2008 to October 29, 2009 

The next period of interest is the first H1N1 flu wave (April 16 – June 10, 2009), 

which is depicted by the middle two vertically dashed lines in Figure 18.  After June 10, 

an upward trend continued throughout the summer and worsened at the time when 

children across the nation were going back to school (late August–early September).  As 

for the second H1N1 flu wave, the solid, right-most vertical line in Figure 18 represents 

the beginning (September 1, 2009) of that upward ILI count trend at the national level.14 

                                                 
14 For a detailed explanation of 2009 national ILI trends and timeline, refer to discussion in Chapter II 

Section B, “Chief Complaint Data and Collection Reporting.” 
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The overall trends for the three sets of logic in Figure 18 are fairly similar, with 

the exception of the 2nd H1N1 wave period.  Notice how the Base Case trend line is 

downward sloping for that period, while Variants 1a and 2a show a convincing increase 

towards the end of the dataset (in alignment with the increasing national average).   Given 

the small scale of Figure 18 for Variant 2a, the dramatic increase is even more intriguing 

when compared to the Base Case, which could possibly imply that the larger counts were 

masking the true signal (e.g., more ILI cases). 

B. ORIGINAL CDC LOGIC (BASE CASE) 

Figure 19 compares actual Monterey County H1N1 cases with the results of five 

EED algorithms under the original CDC “Base Case” logic.  Notice that Figure 19 has 

some additional features from that of Figure 18.  Of note, the small “circles” on the graph 

represent the aggregated daily flu counts for Monterey County on specific days.  For 

example, the “circle” at the first peak above 11/3/08 indicates there were 50 aggregated 

flu counts for that day.  Also, note that the five EED algorithms and corresponding “|” 

marks indicate that the algorithm thresholds had been exceeded for that particular day 

(e.g., signaled an alarm).  



 

Figure 19.   Comparison of actual Monterey County H1N1 cases with the results of five 
EED algorithms under the original CDC logic (Base Case), from September 30, 

2008 to October 29, 2009 

Surprisingly, the C1, C2, and C3 methods were of little to no value in signaling an 

outbreak, unlike CUSUM 1 and CUSUM 2 (aggressive and routine parameters, 

respectively) which performed much better at signaling alarms prior to the first H1N1 

case on May 10.15  Ultimately, CUSUM 1 proved to be the best EED algorithm because 

it signaled consistently for 11 straight days up until the first actual case.  On the other 

                                                 
15 Since May 10, 2009 falls on a Sunday, the “case” appears on the graph as Monday, May 11. 
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hand, CUSUM 1 also signaled between the two H1N1 waves (e.g., summer months) 

when the smoothed daily counts appear nearly flat, which makes those signals look like 

false positives.  Yet, despite the seemingly flat trend line, the CUSUM 1 alarms do 

correspond to the high number of actual H1N1 cases in Monterey County during that 

same timeframe.  Table 6 breaks down the number of alarms corresponding to each EED 

algorithm by time period, under “Base Case” logic.   

 

 

Table 6.   Number of alarms corresponding to five EED algorithms under “Base Case” logic 
from March 2 to October 29, 2009    

C. EXPANDED MCHD LOGIC (VARIANT 1A) 

Figure 20 compares actual Monterey County H1N1 cases with the results of five 

EED algorithms under the “expanded” MCHD logic (Variant 1a). Notice that during the 

seasonal flu period, the “aggressive” parameters (ATFS=5, k=0.56 and h=0.296) of 

CUSUM 1 continued to signal even during the steady decline of ILI counts later in the 

season, unlike EARS’ methods which gave no signals.  That is, given the ATFS is set at 5 

days, CUSUM 1 is going to signal often, whether or not an outbreak actually exists.  On 

the other hand, CUSUM 1 is also the most reliable at signaling when there are increases 

in the smoothed count line.  Given MCHD’s desire for a high sensitivity EED system, 

frequently occurring false alarm rates were acceptable to decision makers.  Table 7 

breaks down the number of alarms corresponding to each EED algorithm by time period, 

under “expanded” MCHD logic.   
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Figure 20.   Comparison of actual Monterey County H1N1 cases with the results of five 
EED algorithms under the “expanded” MCHD logic (Variant 1a), from 

September 30, 2008 to October 29, 2009 
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Table 7.   Number of alarms corresponding to five EED algorithms under “expanded” 
MCHD logic from March 2 to October 29, 2009    

While C3 and CUSUM 2 did in fact signal during the first H1N1 flu wave, it was 

CUSUM 1 that signaled consistently for 10 straight days prior to the first H1N1 case on 

May 10, 2009.  EED methods C1 and C2 failed to signal any alerts for the entire outbreak 

period, rendering them completely ineffective to decision makers.  Lastly, notice the 

Monterey County ILI trends using the expanded logic do not appear to match the national 

trends during the second H1N1 wave (e.g., as the national ILI count went up, MCHD 

counts went down).  Perhaps the key takeaway here is that the detection methods (EARS 

and CUSUM) are working off the syndrome data, so they should signal when that data 

shows an increase in ILI counts.  Then, separately, the syndrome data should show 

“peaks” around actual cases.  Ideally, the syndrome data would show the underlying 

H1N1 outbreak as evidenced by known cases and the detection methods would signal 

given that count increase.   

D. RESTRICTED MCHD LOGIC (VARIANT 2A) 

Figure 21 compares actual Monterey County H1N1 cases with the results of five 

EED algorithms under the “restricted” MCHD logic (Variant 2a).   
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Figure 21.   Comparison of actual Monterey County H1N1 cases with the results of five 
EED algorithms under the “restricted” MCHD logic (Variant 2a), from September 

30, 2008, to October 29, 2009 

Notice that during the latter part of the seasonal flu period, CUSUM 1 remained 

highly sensitive to “bumps” in the data yet it also signaled six alarms (from April 28 to 

May 5) prior to the first Monterey County H1N1 case on May 10th.  Alternatively, these 

signals may have all been false positives.  Nonetheless, all EED algorithms signaled at 

least once within 10 days prior to the first H1N1 case, giving credibility to the remaining 

algorithms.  In fact, CUSUM 2 alarms appear to mimic those of EARS (C1, C2, and C3).  
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On May 26, all EARS methods signaled prior to the second confirmed H1N1 case on 

June 8, whereas the closest CUMSUM 1 signal came on May 18 (e.g., far in advance of 

the actual outbreak).  Table 8 breaks down the number of alarms corresponding to each 

EED algorithm by time period, under “restricted” MCHD logic.   

 

 

Table 8.   Number of alarms corresponding to five EED algorithms under “restricted” 
MCHD logic from March 2 to October 29, 2009    

Overall, the five EED algorithms performed the best (e.g., signaled with 

increasing ILI counts) under the “restricted” logic of Variant 2a, as compared to the 

“expanded” logic of Variant 1a and the “original” logic of the Base Case.  While 

CUSUM 1 is by far the most sensitive, the other methods appear to have signaled at the 

leading edge of most CUSUM 1 alarm clusters.  This raises the interesting issue of 

tradeoffs, in terms of a continuous signal versus an alarm “reset.”  That is to say, do the 

continuing signals provide additional information about the existence of an outbreak?  

While the goal of this research is to highlight the implications in choices of logic, this is a 

question best answered by public health officials. 

E. A CLOSER LOOK AT CUSUM 1 

With CUSUM 1 as the preferred EED method across all sets of logic, Figure 22 

compares CUSUM 1 signals during the first national H1N1 flu wave, April 16–June 10, 

2009.  Notice that prior to the beginning of the flu season, CUSUM 1 signaled across all 

sets of logic.  Prior to the first H1N1 case, as indicated by the asterisk on May 11, 

CUSUM 1 signaled consistently for 11 straight days using the Base Case logic (as 
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indicated by the black tick marks).  Under Variant 1a and Variant 2a logic, CUSUM 1 

signaled for seven and six consecutive days, respectively, but quit just three days prior to 

the first actual case. 

Now turn to Figure 23 to see how CUSUM 1 performed during the active summer 

months, starting June 12 and ending September 1, 2009, just prior to the second national 

H1N1 flu wave.  Here, the smoothed ILI counts for all three sets of logic appear to be on 

an upward trend, corresponding to the numerous H1N1 counts during this summer 

period.  It is hard, however, to visually determine which logic best “matches” the H1N1 

cases in Monterey County.  In other words, given the CUSUM 1 EED methodology, 

there does not appear to be a clear “winner” for which set of logic should be used.  Since 

identifying the leading edge of an outbreak is usually of most importance to public health 

officials, look to the period June 25 – July 14 (indicated by the dashed horizontal lines).  

During this time, there were ten confirmed H1N1 cases reported in Monterey County, of 

which, the CUSUM 1 algorithm signaled every day except for one using the Variant 2a 

logic (as indicated by the lowest level tick marks).16  However, there is evidence that the 

Base Case data results in more sensitivity, in the sense that for this one comparison, it 

signaled four days prior to the restricted case (and thus closer to the first actual case).  

 
16 The asterisk on July 7, 2009 is representative of three H1N1 cases.    



 

Figure 22.   CUSUM 1 comparisons across the various sets of logic during the first H1N1 
flu wave, April 16–June 10, 2009 
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Figure 23.   CUSUM 1 comparisons across the various sets of logic during the active 
summer months, June 12–September 1, 2009 
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V. CONCLUSIONS 

This chapter summarizes the conclusions of this research and makes 

recommendations for future EARS improvement and follow-on study.   

A. EXERCISE CAUTION WHEN CHANGING LOGIC 

EARS’ users, such as MCHD, have the option to modify three areas of logic in 

order to alter the performance of the CDC’s original EARS system.  While the system’s 

flexibility is considered a tremendous benefit to many local health departments, as 

evidenced in Chapter II, small changes in logic can have large, poorly understood effects 

on the resulting syndrome counts and, hence, the performance of the EARS system.  The 

results from Chapter II can largely be summarized by Figure 16, which illustrates 

smoothed ILI counts using five different combinations of text matching logic, symptom 

aliases, and syndrome definitions.    

Under the “Base Case,” out of 153,696 total records, 9,093 records (almost 6%) 

were flagged as being ILI syndromes.  The expanded aliases and syndrome definitions 

(Variant 1a) resulted in a 53% increase in the number of records flagged for the ILI 

syndrome, while the restricted aliases and syndrome definitions (Variant 2a) resulted in a 

92% decrease from the original “Base Case.”  In order to figure out which combination of 

methods worked best, an attempt was made to compare results with ICD-9 codes.  For the 

reasons specified in Chapter II and despite having ICD-9 codes in the MCHD dataset, it 

was determined not to use them as the “gold standard” and instead use documented H1N1 

cases, as provided by MCHD.  

B. ALGORITHMS NEED GOOD DATA 

A detection algorithm is only as good as the data.  Greater emphasis, therefore, 

should be focused on improvements in data collection, management, and syndrome 

definitions.  In other words, biosurveillance systems need quality data and a precise way 

to measure that quality (e.g., standards for sensitivity and specificity).  Currently, there 

does not appear to be a “gold standard” for measuring the accuracy of EARS until after 
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an outbreak has already occurred, such as the case with this research.  It is recommended 

that the public health community take the lead in demanding better quality symptom data 

from the various sources available.   

Perhaps another area for improvement lies in the secondary use of chief complaint 

data for the purposes of using text-matching algorithms.  Stated differently, chief 

complaints are serving a purpose for which they were not originally intended.  Ideally, 

one should ask what information would be most useful and then do the best at gathering it 

rather than just rely on what data is collected by others.  If chief complaint data is going 

to continue to be used (and there isn’t much of an alternative), then the text matching 

logic and alias lists must be improved.  Further, they likely need to be tailored to local 

conditions, conventions, and practices. 

In the course of this research, it was also discovered that for Monterey County, 

EARS’ C1, C2, and C3 algorithms factor in “zeros” for days when clinics are not open 

for business (e.g., weekends and holidays).  Given that the sample standard deviation is 

based on the previous 7–9 days worth of data, it is no wonder that a 3 sigma threshold 

fails to signal as often as it should for C1 and C2.  Figures 19 and 20 illustrate this point.  

It is strongly recommended that these “zero” data points be discarded before 

implementing EARS or that the EARS programming logic allow the local user the 

flexibility to redefine the workweek from seven days to whatever local conditions dictate.  

C. RESTRICTED LOGIC IS PREFERRED 

Surprisingly, under “original” and “expanded” sets of logic, EARS methods were 

of little to no value in signaling an outbreak. Ultimately, it was CUSUM 1 that proved the 

most reliable at signaling alarms prior to and throughout the time when Monterey County 

was experiencing H1N1 cases.  Given that EARS does not utilize the CUSUM 

algorithms, however, it is clear from the results of Figure 21 that the “restricted” logic of 

Variant 2a is to be preferred for use by MCHD, at least in comparison to the two other 

options evaluated.  Of note, EARS signaled at the leading edge of most CUSUM 1 alarm 

clusters under these conditions.  Given that CUSUM 1 is by far the most sensitive across 

all variations in logic, it brings about the issue of tradeoffs, in terms of a continuous 
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signal versus an alarm “reset.”  It is reasonable to question if these continuous signals 

provide value-adding information about the existence of an outbreak.  While the goal of 

this research is to highlight the implications in choices of logic, this is a question best 

answered by public health officials.   

D. FUTURE RESEARCH OPPORTUNITIES 

It would be interesting to observe how EARS would perform given the non-zero 

data point entries, as discussed in Section B above.  One might also want to assess the 

performance of EARS for thresholds other than those currently fixed in the program 

where, for alternate thresholds, EARS may be able to signal “appropriately.”  

Alternatively, one could observe how EARS methods would perform once adjusted for 

seasonal trends, such as found within ILI data. 

Finally, more research should be devoted towards exploring the issue of false 

positives.  As an example, in Chapter IV it was determined that the “aggressive” 

parameters of CUSUM 1 (h = 0.296, ATFS = 5, k = 0.56) performed reasonably well 

across all three sets of logic: CDC’s original (Base Case) logic, MCHD’s expanded 

(Variant 1a) logic, and MCHD’s restricted (Variant 2a) logic.  Even after looking closely 

at the CUSUM 1 signals during the first H1N1 flu wave and during the peak summer 

months; however, there did not appear to be a clear “winner” for which set of logic 

should be used.  Then again, this research only focused on one defined syndrome, ILI.  

Future research is certainly recommended to measure the robustness of these results 

across a variety of other syndromes. 

 



 52

THIS PAGE INTENTIONALLY LEFT BLANK 



 53

APPENDIX A. R CODE FOR “ENHANCED NPS LOGIC”  

Build a function (“finder”) to look for matches of “str” (string) in “vec” (vector).  Note that this is 

more sophisticated than the SAS coding that MCHD is currently using, which only looks for a 

simple match anywhere in “vec.”  Finder, on the other hand, only allows matches if “str” is at 

the beginning or end of a word (or matches vec completely) for “str” longer than three 

characters.  It requires even more restrictive matching for “str” of length three or fewer 

characters.   
 

finder <- function (str, vec)  

{ 

   noletters <- "[^A-Z]" 

   vec <- paste (" ", vec, " ", sep="") 

   lefty <- paste (noletters, str, sep="") 

   righty <- paste (str, noletters, sep="") 

   shorty <- paste (noletters, str, noletters, sep="") 

   if(nchar(str)>3) 

      {regexpr (lefty, vec, ignore.case=TRUE) > 0 | regexpr (righty, 

vec, ignore.case=TRUE) > 0 | toupper(str) == toupper(vec)} 

      else{regexpr (shorty, vec, ignore.case=TRUE) > 0 | toupper(str) 

== toupper(vec)} 

} 
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APPENDIX B. MATLAB CODE FOR CALCULATING CUSUM 

%Initialize variables 
k= 1.06; %Placeholder until k can be established 
h= .62; %Placeholder until h can be established 
baselinePeriod = 35; 
startupPeriod = 45; %Placeholder for #days of residuals to use 
cusum = 0; 
alarmCount = 1; 
  
actualData = dlmread('unbiased.CDC1counts.csv'); 
matX1 = [ ones(baselinePeriod,1) (baselinePeriod:(-1):1)']; 
  
dayOfAlarm = (1:1:size(alarmCount)); %Initialize vector to track days 
in which cusum>=h 
today = baselinePeriod; 
tomorrow = today+1; 
residuals = (1:1:length(actualData)); 
stdResidualVector = (1:1:length(actualData)); 
  
%Calculate residuals 
  
for i=1:1:startupPeriod 
    recentData= actualData((today:(-1):(today-baselinePeriod+1)),1);  
     
    matX2= actualData((today:(-1):(today-baselinePeriod+1)),2:5);  
    matX3 = [matX1,matX2]; 
    b= regress(recentData, matX3); 
    predCount= ([1 (baselinePeriod+1),actualData((today+1),2:5)])*b; 
     
    residuals(tomorrow)= actualData((tomorrow),1)-predCount; 
    
    today= today+1; 
    tomorrow= today+1; 
  
end 
  
  
while (today<length(actualData)-1) 
    if (cusum>=h) 
        dayOfAlarm(alarmCount) = today; 
        alarmCount = alarmCount+1; 
  
    end 
    recentData= actualData((today:(-1):(today-baselinePeriod+1)),1);  
     
    matX2= actualData((today:(-1):(today-baselinePeriod+1)),2:5);  
    matX3 = [matX1,matX2]; 
    b= regress(recentData, matX3); 
    predCount= ([1 (baselinePeriod+1),actualData((today+1),2:5)])*b; 
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    residuals(tomorrow)= actualData((tomorrow),1)-predCount; 
    stdDev = std(residuals(tomorrow:(-1):tomorrow-startupPeriod)); 
     
    
    stdResidual = residuals(tomorrow)/stdDev;  
    stdResidualVector(today) = stdResidual; 
     
    cusum=max(0,(stdResidual-k+cusum)); 
    %cusum 
  
    today= today+1; 
    tomorrow=today+1; 
  
       
    
end 



APPENDIX C. STANDARDIZED RESIDUAL PLOTS AND QQ 
PLOTS OF HISTORICAL DATA 

To plot residuals in Matlab: 
>X=stdResidualVector(45:119) %with baseline 35 days and “startup” 10 days; 119 = 1/3 
of 1.5yrs 
>plot(X) 
>xlabel(‘time’) 
>ylabel(‘standardized residuals’) 
>title(‘time series plot of stdResiduals’) 
 
 
 
 
 
CDC1 “Base Case”  
>mean(X) 
= .0429 
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CDC1 “Base Case”  
> std(X) 
= 1.1036 
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MCHD1 “Variant 1A” 
>mean(X) 
=  0.0211 
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MCHD1 “Variant 1A” 
> std(X) 
=  1.0073 
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MCHD2 “Variant 2A” 
>mean(X) 
 =  0.0068 
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MCHD2 “Variant 2A” 
> std(X) 
=  1.0987 
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APPENDIX D. R CODE TO ESTIMATE CUSUM THRESHOLD   

The output is the estimated ATFS and its standard error. 
  
IC.ARL.EST.func <- function(x,h,k){ 

  runs <- rep(0,x) 

  CUSUM <- 0 

  for(i in 1:x){ 

    while(CUSUM<h){ 

      CUSUM <- max(0, (CUSUM + rnorm(1)-k)) 

      runs[i] <- runs[i] + 1 

      } 

    CUSUM <- 0 

  } 

  print(c(mean(runs),sd(runs)/sqrt(x))) 

} 

  
To get an ATFS=5 (s.e.=0.0045) with k=0.56, set h=0.296.  Here’s the output: 
  
> IC.ARL.EST.func(1000000,0.296,0.56) 
[1] 5.004290000 0.004450843 
  
To get an ATFS=20 (s.e.=0.00) with k=1.06, set h=0.62.   Here’s the output: 
  
> IC.ARL.EST.func(1000000,0.622,1.06) 
[1] 20.01101900  0.01944600 
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